题目
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率。 (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
答案:【解析】(1)由题意知,所有可能取值为200,300,500,由表格数据知 ,,. 因此的分布列为 0.2 0.4 0.4 (2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑. 当时, 若最高气温不低于25,则; 若最高气温位于区间,则; 若最高气温低于20,则; 因此. 当时, 若最高气温不低于20,则; 若最高气温低于20,则; 因此. 所以n=300时,Y的数学期望达到最大值,最大值为520元.