题目

如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比) (1)求点B距水平面AE的高度BH; (2)求广告牌CD的高度. (测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)   答案: 解:(1)过B作BG⊥DE于G, Rt△ABF中,i=tan∠BAH==, ∴∠BAH=30°, ∴BH=AB=5; (2)由(1)得:BH=5,AH=5, ∴BG=AH+AE=5+15, Rt△BGC中,∠CBG=45°, ∴CG=BG=5+15. Rt△ADE中,∠DAE=60°,AE=15, ∴DE=AE=15. ∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m. 答:宣传牌CD高约2.7米.
数学 试题推荐