题目
已知等差数列{an}满足a1+a2=10,a4-a3=2. (1)求{an}的通项公式; (2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?
答案:解:(1)设等差数列{an}的公差为d. 因为a4-a3=2,所以d=2. 又因为a1+a2=10,所以2a1+d=10,故a1=4. 所以a4=4+2(n-1)=2n+2 (n=1,2,…). (2)设等比数列{bn}的公比为q. 因为b2=a3=8,b3=a7=16, 所以q=2,b1=4. 所以b6=4×26-1=128. 由128=2n+2得n=63, 所以b6与数列{an}中的第63项相等.