题目
如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m. (1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
答案:解:(1)如图1,设抛物线与x轴的另一个交点为D, 由对称性得:D(3,0), 设抛物线的解析式为:y=a(x﹣1)(x﹣3), 把A(0,3)代入得:3=3a, a=1, ∴抛物线的解析式;y=x2﹣4x+3; (2)如图2,设P(m,m2﹣4m+3), ∵OE平分∠AOB,∠AOB=90°, ∴∠AOE=45°, ∴△AOE是等腰直角三角形, ∴AE=OA=3, ∴E(3,3), 易得OE的解析式为:y=x, 过P作PG∥y轴,交OE于点G, ∴G(m,m), ∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3, ∴S四边形AOPE=S△AOE+S△POE, =×3×3+PG•AE, =+×3×(﹣m2+5m﹣3), =﹣+, =﹣(m﹣)2+, ∵﹣<0, ∴当m=时,S有最大值是; (3)如图3,过P作MN⊥y轴,交y轴于M,交l于N, ∵△OPF是等腰直角三角形,且OP=PF, 易得△OMP≌△PNF, ∴OM=PN, ∵P(m,m2﹣4m+3), 则﹣m2+4m﹣3=2﹣m, 解得:m=或, ∴P的坐标为(,)或(,); 如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M, 同理得△ONP≌△PMF, ∴PN=FM, 则﹣m2+4m﹣3=m﹣2, 解得:x=或; P的坐标为(,)或(,); 综上所述,点P的坐标是:(,)或(,)或(,)或(,).