题目
等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=( ) A.9 B.15 C.18 D.30
答案:D. 【考点】等比数列的前n项和. 【分析】设等比数列{an}的公比为q>0,由2S3=8a1+3a2,可得2(a1+a2+a3)=8a1+3a2,化为:2q2﹣q﹣6=0,解得q,进而得出. 【解答】解:设等比数列{an}的公比为q>0,∵2S3=8a1+3a2, ∴2(a1+a2+a3)=8a1+3a2,化为:2a3=6a1+a2,可得=6a1+a1q,化为:2q2﹣q﹣6=0,解得q=2. 又a4=16,可得a1×23=16,解得a1=2. 则S4==30.