题目
如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证: (1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F.
答案:解:(1)∵D,E分别为AB,BC的中点, ∴DE为△ABC的中位线, ∴DE∥AC, ∵ABC-A1B1C1为棱柱, ∴AC∥A1C1, ∴DE∥A1C1, ∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F, ∴DE∥面A1C1F; (2)在ABC-A1B1C1的直棱柱中, ∴AA1⊥平面A1B1C1, ∴AA1⊥A1C1, 又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B, ∴A1C1⊥平面AA1B1B, ∵DE∥A1C1, ∴DE⊥平面AA1B1B, 又∵A1F⊂平面AA1B1B, ∴DE⊥A1F, 又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE, ∴A1F⊥平面B1DE, 又∵A1F⊂平面A1C1F, ∴平面B1DE⊥平面A1C1F. 【解析】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度适中. (1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1; (2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.