题目

如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为(  )                                                                                                                                                        A.                           B.                       C.                           D. 答案:D【考点】正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.                   【分析】延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.                                            【解答】解:延长AE交DF于G,如图:                                                    ∵AB=5,AE=3,BE=4,                                                                          ∴△ABE是直角三角形,                                                                          ∴同理可得△DFC是直角三角形,                                                            可得△AGD是直角三角形,                                                                      ∴∠ABE+∠BAE=∠DAE+∠BAE,                                                            ∴∠GAD=∠EBA,                                                                             同理可得:∠ADG=∠BAE,                                                                     在△AGD和△BAE中,                                                                        ,                                                                              ∴△AGD≌△BAE(ASA),                                                                    ∴AG=BE=4,DG=AE=3,                                                                        ∴EG=4﹣3=1,                                                                                  同理可得:GF=1,                                                                             ∴EF=,                                                                        故选D.                                                                                                                                                                        【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.                                                
数学 试题推荐