题目
16.设定义域为R的函数,则关于的方程有7个不同实数解的充要条件是( ) A.且 B.且 C.且 D.且
答案:C解析:f(x)=故函数f(x)的图象如下图.由图知,f(x)图象关于x=1对称,且f(x)≥0,若方程f2(x)+bf(x)+c=0①有7个解,则方程t2+bt+c=0②有两个不等实根,且一根为正,一根为0.否则,若方程②有两相等实根,则方程①至多有4个解,若方程②有两不等正实根,则方程①有8个解.∵f(x)=0满足方程,则c=0,又∵另一个f(x)>0,∴b=-f(x)<0.故b<0且c=0,选C.