题目

如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是(  )                                                                                             A.AD=BC                   B.CD=BF                   C.∠A=∠C                D.∠F=∠CDE 答案:D【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.                                              【解答】解:添加:∠F=∠CDE,                                                           理由:                                                                                                ∵∠F=∠CDE,                                                                                  ∴CD∥AB,                                                                                       在△DEC与△FEB中,,                                                ∴△DEC≌△FEB(AAS),                                                                    ∴DC=BF,                                                                                         ∵AB=BF,                                                                                         ∴DC=AB,                                                                                         ∴四边形ABCD为平行四边形,                                                               故选:D.                                                                                          【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.                                                
数学 试题推荐