题目
如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
答案:【考点】等边三角形的性质. 【专题】证明题. 【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证. 【解答】证明:连接BD, ∵在等边△ABC,且D是AC的中点, ∴∠DBC=∠ABC=×60°=30°,∠ACB=60°, ∵CE=CD, ∴∠CDE=∠E, ∵∠ACB=∠CDE+∠E, ∴∠E=30°, ∴∠DBC=∠E=30°, ∴BD=ED,△BDE为等腰三角形, 又∵DM⊥BC, ∴M是BE的中点. 【点评】本题考查了等腰三角形顶角平分线、底边上的中线和2016届高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.