题目
如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是 .
答案:12【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度. 【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大, 由图象可知:点P从B向C运动时,BP的最大值为5, 即BC=5, 由于M是曲线部分的最低点, ∴此时BP最小, 即BP⊥AC,BP=4, ∴由勾股定理可知:PC=3, 由于图象的曲线部分是轴对称图形, ∴PA=3, ∴AC=6, ∴△ABC的面积为:×4×6=12 故答案为:12 【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.