题目
如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7). (1)求抛物线m的解析式; (2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标; (3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
答案:【考点】二次函数综合题. 【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式; (2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标; (3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标. 【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上 ∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a= ∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1; (2)∵点B关于对称轴直线x=3的对称点B′为(6,1) ∴连接EB′交l于点P,如图所示 设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得 解得, 则函数解析式为y=﹣x+ 把x=3代入解得y=, ∴点P坐标为(3,); (3)∵y=﹣x+与x轴交于点D, ∴点D坐标为(7,0), ∵y=﹣x+与抛物线m的对称轴l交于点F, ∴点F坐标为(3,2), 求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2, 设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14, 设点Q的坐标为(a,),把点Q代入y=2x﹣14得 =2a﹣14 解得a1=9,a2=15. ∴点Q坐标为(9,4)或(15,16).