题目

(本题6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连结DC、AE. 1.(1)求证:△ADE≌△DFC;2.(2)过点E作EH∥DC交DB于点G,交BC于点H,连结AH.求∠AHE的度数;3.(3)若BG=,CH=2,求BC的长.  答案: 1.(1)证明:如图,∵ 线段DB顺时针旋转60°得线段DE,∴∠EDB =60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB =60°.∴∠EDB =∠B .∴EF∥BC.················································ 1分∴DB=FC,∠ADF=∠AFD =60°.∴DE=DB=FC,∠ADE=∠DFC =120°,△ADF是等边三角形.∴AD=DF.∴ △ADE≌△DFC.2.(2)由 △ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC, EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH. ······································································································· 3分∴∠AEH=∠1+∠3=∠2+∠4 =∠ACB=60°. ∴△AEH是等边三角形.∴∠AHE=60°.3.(3)设BH=x,则AC= BC =BH+HC= x+2, 由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.··························································································· 5分∴.即.解得.∴ BC=3.解析:略 
数学 试题推荐