题目
如图,在四边形ABCD中,E是AD上一点,延长CE到点F,使. (1) 求证: (2) 用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图痕迹,不写作法)。
答案:解析:(1)证明:∵ 四边形ABCD 是平行四边形, ∴ AD∥BC. ∴ ∠CED=∠BCF. ∵ ∠CED+∠DCE+∠D=180°,∠BCF+∠FBC+∠F=180°, ∴ ∠D=180°-∠CED-∠DCE,∠F=180°-∠BCF-∠FBC. 又∠DCE=∠FBC, ∴ ∠D=∠F. ······························································· 4 分 (2)图中P 就是所求作的点. ··································································· 7 分