题目

设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1. (1)求a4的值; (2)证明:为等比数列. 答案: (1)解:当n=2时,4S4+5S2=8S3+S1,即,解得a4=. (2)证明:由4Sn+2+5Sn=8Sn+1+Sn-1(n≥2),得4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2),即4an+2+an=4an+1(n≥2). 因为 4a3+a1=4×+1=6=4a2, 所以 4an+2+an=4an+1,
数学 试题推荐