题目

(2019·河北中考模拟)如图,在直角坐标系中,矩形OABC的顶点C在x轴的负半轴上,点A在y轴正半轴上,矩形OABC的面积为 .把矩形OABC沿DE翻折,使点B与点O重合,点C落在第三象限的G点处,作EH⊥x轴于H,过E点的反比例函数图象恰好过DE的中点F.则k=_____,线段EH的长为:____ . 答案:-2    2    【解析】 解:连接BO与ED交于点Q,过点Q作QN⊥x轴,垂足为N,如图所示, ∵矩形OABC沿DE翻折,点B与点O重合, ∴BQ=OQ,BE=EO. ∵四边形OABC是矩形, ∴AB∥CO,∠BCO=∠OAB=90°. ∴∠EBQ=∠DOQ. 在△BEQ和△ODQ中,  . ∴△BEQ≌△ODQ(ASA). ∴EQ=DQ. ∴点Q是ED的中点. ∵∠QNO=∠BCO=90°, ∴QN∥BC. ∴△ONQ∽△OCB. ∴. ∴S△ONQ= S△OCB. ∵S矩形OABC=8, ∴S△OCB=S△OAB=4. ∴S△ONQ=. ∵点F是ED的中点, ∴点F与点Q重合. ∴S△ONF=. ∵点F在反比例函数y=上, ∴=. ∵k<0, ∴k=﹣2. ∴S△OAE==. ∵S△OAB=4, ∴AB=4AE. ∴BE=3AE. 由轴对称的性质可得:OE=BE. ∴OE=3AE.OA==2AE. ∴S△OAE=AO•AE=×2AE×AE=. ∴AE=1. ∴OA=2×1=2. ∵∠EHO=∠HOA=∠OAE=90°, ∴四边形OAEH是矩形. ∴EH=OA=2. 故答案分别为:﹣2、2. 【点睛】 本题考查了反比例函数比例系数的几何意义、轴对称的性质、全等三角形的判定与性质、矩形的判定与性质、相似三角形的判定与性质等知识,有一定的综合性.
数学 试题推荐