题目
19.如图4,某地为了开发旅游资源,欲修建一条连接风景点和居民区的公路,点所在的山坡面与山脚所在水平面所成的二面角为(),且,点到平面的距离(km).沿山脚原有一段笔直的公路可供利用.从点到山脚修路的造价为万元/km,原有公路改建费用为万元/km.当山坡上公路长度为km()时,其造价为万元.已知,,,. (I)在上求一点,使沿折线修建公路的总造价最小;(II) 对于(I)中得到的点,在上求一点,使沿折线修建公路的总造价最小.(III)在上是否存在两个不同的点、,使沿折线修建公路的总造价小于(II)中得到的最小总造价,证明你的结论. 图4
答案:解:(I)如图,,,,由三垂线定理逆定理知,,所以是山坡与所成二面角的平面角,则,.设,.则.记总造价为万元,据题设有当,即时,总造价最小.(II)设,,总造价为万元,根据题设有.则,由,得.当时,,在内是减函数;当时,,在内是增函数.故当,即(km)时总造价最小,且最小总造价为万元.(III)解法一:不存在这样的点,.事实上,在上任取不同的两点,.为使总造价最小,显然不能位于 与之间.故可设位于与之间,且=,,,总造价为万元,则.类似于(I)、(II)的讨论知,,,当且仅当,同时成立时,上述两个不等式等号同时成立,此时,,取得最小值,点分别与点重合,所以不存在这样的点,使沿折线修建公路的总造价小于(II)中得到的最小总造价.解法二:同解法一得.当且仅当且,即同时成立时,取得最小值,以下同解法一.