题目

如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点. (1)求证:是的切线; (2)设,,试用含的代数式表示线段的长; (3)若,,求的长. 答案:(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】 分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证; (2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD; (3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可. 详解:(1)证明:如图,连接OD, ∵AD为∠BAC的角平分线, ∴∠BAD=∠CAD, ∵OA=OD, ∴∠ODA=∠OAD, ∴∠ODA=∠CAD, ∴OD∥AC, ∵∠C=90°, ∴∠ODC=90°, ∴OD⊥BC, ∴BC为圆O的切线; (2)连接DF,由(1)知BC为圆O的切线, ∴∠FDC=∠DAF, ∴∠CDA=∠CFD, ∴∠AFD=∠ADB, ∵∠BAD=∠DAF, ∴△ABD∽△ADF, ∴ ,即AD2=AB•AF=xy, 则AD= (3)连接EF,在Rt△BOD中,sinB=, 设圆的半径为r,可得, 解得:r=5, ∴AE=10,AB=18, ∵AE是直径, ∴∠AFE=∠C=90°, ∴EF∥BC, ∴∠AEF=∠B, ∴sin∠AEF=, ∴AF=AE•sin∠AEF=10×, ∵AF∥OD, ∴,即DG=AD, ∵AD=, 则DG=×=. 点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
数学 试题推荐
最近更新