题目

如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为     .(n为正整数) 答案:(n,)   【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示: 在Rt△OA1P1中,OA1=1,OP1=2, ∴A1P1===, 同理:A2P2==,A3P3==,……, ∴P1的坐标为( 1,),P2的坐标为( 2,),P3的坐标为(3,),……, …按照此规律可得点Pn的坐标是(n,),即(n,) 故答案为:(n,).
数学 试题推荐