题目

已知函数f(x)=x2+ax+b(a、b∈R+),当p+q=1时,试证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x、y都成立的充要条件是0≤p≤1. 答案:证明:∵pf(x)+qf(y)=p(x2+ax+b)+q(y2+ay+b),f(px+qy)=(px+qy)2+a(px+qy)+b,∴pf(x)+qf(y)-f(px+qy)=(p-p2)x2-2pqxy+(q-q2)y2=pqx2-2pqxy+pqy2=pq(x-y)2≥0pq≥0 p(1-p)≥00≤p≤1.
数学 试题推荐