题目
已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点. (1)求证:△ABM≌△DCM; (2)判断四边形MENF是什么特殊四边形,并证明你的结论; (3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明).
答案: (1)证明:∵四边形ABCD是矩形, ∴AB=CD,∠A=∠D=90°, 又∵M是AD的中点, ∴AM=DM. 在△ABM和△DCM中, , ∴△ABM≌△DCM(SAS). (2)解:四边形MENF是菱形. 证明如下: ∵E,F,N分别是BM,CM,CB的中点, ∴NE∥MF,NE=MF. ∴四边形MENF是平行四边形. 由(1),得BM=CM,∴ME=MF. ∴四边形MENF是菱形. (3)解: 当AD:AB=2:1时,四边形MENF是正方形.理由: ∵M为AD中点, ∴AD=2AM. ∵AD:AB=2:1, ∴AM=AB. ∵∠A=90, ∴∠ABM=∠AMB=45°. 同理∠DMC=45°, ∴∠EMF=180°﹣45°﹣45°=90°. ∵四边形MENF是菱形, ∴菱形MENF是正方形.