题目

(本小题满分14分) 平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线. (Ⅰ)求曲线的方程,并讨论的形状与值得关系; (Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。 答案:本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)     解:(I)设动点为M,其坐标为,     当时,由条件可得 即, 又的坐标满足 故依题意,曲线C的方程为 当曲线C的方程为是焦点在y轴上的椭圆; 当时,曲线C的方程为,C是圆心在原点的圆; 当时,曲线C的方程为,C是焦点在x轴上的椭圆; 当时,曲线C的方程为C是焦点在x轴上的双曲线。 (II)由(I)知,当m=-1时,C1的方程为 当时, C2的两个焦点分别为 对于给定的, C1上存在点使得的充要条件是 ②   ①   由①得由②得 当 或时, 存在点N,使S=|m|a2; 当 或时, 不存在满足条件的点N, 当时, 由, 可得 令, 则由, 从而, 于是由, 可得 综上可得: 当时,在C1上,存在点N,使得 当时,在C1上,存在点N,使得 当时,在C1上,不存在满足条件的点N。
数学 试题推荐