题目

以下是小辰同学阅读的一份材料和思考: 五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).         小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长. 参考上面的材料和小辰的思考方法,解决问题: 五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2. 具体要求如下: (1)设拼接后的长方形的长为a,宽为b,则a的长度为           ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)   答案: 解:(1);    (2)如图(画出其中一种情况即可)       (2)如图(画出其中一种情况即可)   
数学 试题推荐