题目

已知f(x)为二次函数,且f(-1)=2,f′(0)=0,f(x)dx=-2, (1)求f(x)的解析式; (2)求f(x)在[-1,1]上的最大值与最小值. 答案:解:(1)设f(x)=ax2+bx+c(a≠0), 则f′(x)=2ax+b. 由f(-1)=2,f′(0)=0, 得即 ∴f(x)=ax2+2-a. 又f(x)dx=(ax2+2-a)dx =[ax3+(2-a)x]=2-a=-2, ∴a=6,从而f(x)=6x2-4. (2)∵f(x)=6x2-4,x∈[-1,1]. ∴当x=0时,[f(x)]min=-4; 当x=±1时,[f(x)]max=2.
数学 试题推荐