题目

如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为     .   答案: 或 .  【考点】PB:翻折变换(折叠问题);LB:矩形的性质. 【分析】设AE=A′E=x,则DE=ED′=15﹣x,只要证明BD′=ED′=15﹣x,在Rt△BA′D′中,根据BD′2=BA′2+A′D′2,列出方程即可解决问题. 【解答】解:∵把△ABE沿BE折叠,使点A落在点A′处, ∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°, ∵把△DEF沿EF折叠,使点D落在直线EA′上的点D′处, ∴DE=D′E,DF=D′F,∠ED′F=∠D=90°, 设AE=A′E=x,则DE=ED′=15﹣x, ∵AD∥BC, ∴∠1=∠EBC, ∵∠1=∠2, ∴∠2=∠EBD′, ∴BD′=ED′=15﹣x, ∴A′D′=15﹣2x, 在Rt△BA′D′中, ∵BD′2=BA′2+A′D′2, ∴82+(15﹣2x)2=(15﹣x)2, 解得x=, ∴AE=或.  
数学 试题推荐