题目

 如图35所示,一根长 L = 1.5m 的光滑绝缘细直杆MN ,竖直固定在场强为 E ==1.0 ×105N / C 、与水平方向成θ=300角的倾斜向上的匀强电场中。杆的下端M固定一个带电小球 A ,电荷量Q=+4.5×10-6C;另一带电小球 B 穿在杆上可自由滑动,电荷量q=+1.0 ×10一6 C,质量m=1.0×10一2 kg 。现将小球B从杆的上端N静止释放,小球B开始运动。(静电力常量k=9.0×10 9N·m2/C2,取 g =l0m / s2)(1)小球B开始运动时的加速度为多大?(2)小球B 的速度最大时,距 M 端的高度 h1为多大?(3)小球 B 从 N 端运动到距 M 端的高度 h2=0.6l m 时,速度为v=1.0m / s ,求此过程中小球 B的电势能改变了多少?        图35         答案: 解析:由题意可知,带电小球在匀强电场和点电荷非匀强电场这样的叠加场中运动,前两问应用力的观点求解,因库仑力是变力,所以第(3)问只能用能的观点求解。(1)开始运动时小球受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由牛顿第二定律得                                                  解得                                             代入数据解得                                      (2)小球速度最大时合力为零,即                                                        解得                                                        代入数据解得                                                  (3)小球从开始运动到速度为的过程中,设重力做功为,电场力做功为,     库仑力做功为,根据动能定理有                                                                                                                解得                           设小球的电势能改变了△,则△                                                     △                                             △ 
物理 试题推荐