题目
设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2﹣(an+2+an)x满足f′(1)=0. (1)求数列{an}的通项公式; (2)设bn=,记数列{bn}的前n项和为Sn,求证Sn<.
答案:【考点】数列的求和;数列递推式. 【分析】(1)求出函数的导数,由条件可得2an+1=an+2+an,由等差数列的性质可得数列{an}为等差数列,设公差为d,运用等差数列的通项公式,可得d=2,即可得到通项公式; (2)由bn==(﹣),运用裂项相消求和,由不等式的性质,即可得证. 【解答】(1)解:函数f(x)=an+1x2﹣(an+2+an)x的导数为f′(x)=2an+1x﹣(an+2+an), 由f′(1)=0,可得2an+1=an+2+an, 由等差数列的性质可得数列{an}为等差数列,设公差为d, 则a1=2,a2+a5=2a1+5d=14, 解得d=2, 即有an=a1+2(n﹣1)=2n. (2)证明:bn===(﹣), 则Sn=(1﹣+﹣+…+﹣) =(1﹣)<. 则Sn<.