题目

选做题选修4-1:几何证明选讲如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P。(1)证明:OM·OP = OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点。过B点的切线交直线ON于K。证明:∠OKM = 90°。 答案:解:(Ⅰ)证明:因为是圆的切线,所以.又因为.在中,由射影定理知,.(Ⅱ)证明:因为是圆的切线,.同(Ⅰ),有,又,所以,即.又,所以,故.
数学 试题推荐