题目
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-. (1)求函数的解析式; (2)若关于x的方程f(x)=k有三个零点,求实数k的取值范围.
答案:解:由题意可知f′(x)=3ax2-b, (1)于是解得 故所求的解析式为f(x)=x3-4x+4. (2)由(1)可知f′(x)=x2-4=(x-2)(x+2), 令f′(x)=0,得x=2,或x=-2. 当x变化时f′(x)、f(x)的变化情况如下表所示: x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x) 单调递增 单调递减 - 单调递增 因此,当x=-2时,f(x)有极大值; 当x=2时,f(x)有极小值-. 所以函数的大致图象如图. 故实数k的取值范围是-<k<.