题目
设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为. (1)求椭圆的方程; (2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.
答案:解析:(1)设F(-c,0),由=,知a=c.过点F且与x轴垂直的直线为x=-c,代入椭圆方程有,解得y=±,于是=,解得b=,又a2-c2=b2,从而a=,c=1,所以椭圆的方程为+=1. (2)设点C(x1,y1),D(x2,y2),由F(-1,0)得直线CD的方程为y=k(x+1),由方程组消去y,整理得(2+3k2)x2+6k2x+3k2-6=0. 由根与系数的关系可得x1+x2=-,x1x2=, 因为A(-,0),B(,0),所以 =(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1) =6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1) =6-(2+2k2)x1x2-2k2(x1+x2)-2k2 =6+. 由已知得6+=8,解得k=±.