题目

 在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH. (1)求证:AC⊥ED (2)求证:△ACD≌△ACE (3)请猜测CD与DH的数量关系,并证明 答案:证(1) :∵∠BAD=90°,AB=BC, ∴∠BAC=45°, ∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°, ∴∠BAC=∠CAD, ∴AH⊥ED, 即AC⊥ED---------------2分 (2) ∵∠BAD=90°,AB=BC, ∴∠BAC=45°, ∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°, ∴∠BAC=∠CAD,--------------3分 在△ACD和△ACE中, , ∴△ACD≌△ACE(SAS),-------------5分   (3)  CD=2DH------------6分 ∵ △ACD≌△ACE ∴CD=CE, ∵∠BCE=15°, ∴∠BEC=90°﹣∠BCE=90°﹣15°=75°, ∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°, ∴△CDE为等边三角形, ∴∠DCH=30°,-------------8分 ∴CD=2DH,-------------10分
数学 试题推荐
最近更新