题目
如图15所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点. (1)求证:EF⊥BC; (2)求二面角EBFC的正弦值. 图15
答案:.解:(1)证明:方法一,过点E作EO⊥BC,垂足为O,连接OF.由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,EO∩FO=O,所以BC⊥平面EFO.又EF⊂平面EFO,所以EF⊥BC. 图1 方法二,由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线,并将其作为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线,并将其作为z轴,建立如图所示的空间直角坐标系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,-),=(0,2,0),因此·=0, 从而⊥,所以EF⊥BC. 图2 (2)方法一,在图1中,过点O作OG⊥BF,垂足为G,连接EG.因为平面ABC⊥平面BDC,所以EO⊥面BDC,又OG⊥BF,所以由三垂线定理知EG⊥BF, 因此∠EGO为二面角EBFC的平面角. 在△EOC中,EO=EC=BC·cos 30°=. 由△BGO∽△BFC知,OG=·FC=,因此tan∠EGO==2,从而得sin∠EGO=,即二面角EBFC的正弦值为. 方法二,在图2中,平面BFC的一个法向量为n1=(0,0,1). 设平面BEF的法向量n2=(x,y,z), 又=(,,0),=(0,,), 所以得其中一个n2=(1,-,1). 设二面角EBFC的大小为θ,且由题知θ为锐角,则cos θ=|cos〈n1,n2〉|==, 因此sin θ==,即所求二面角正弦值为.