题目

如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点. (Ⅰ)求证:AO⊥BE. (Ⅱ)求二面角F﹣AE﹣B的余弦值; (Ⅲ)若BE⊥平面AOC,求a的值. 答案:【考点】二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质. 【专题】空间位置关系与距离;空间角. 【分析】(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE. (Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值; (Ⅲ)利用线面垂直的性质,结合向量法即可求a的值 【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点, ∴AO⊥EF, ∵平面AEF⊥平面EFCB,AO⊂平面AEF, ∴AO⊥平面EFCB ∴AO⊥BE. (Ⅱ)取BC的中点G,连接OG, ∵EFCB是等腰梯形, ∴OG⊥EF, 由(Ⅰ)知AO⊥平面EFCB, ∵OG⊂平面EFCB,∴OA⊥OG, 建立如图的空间坐标系, 则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=, 则E(a,0,0),A(0,0,a),B(2,,0), =(﹣a,0,a),=(a﹣2,﹣,0), 设平面AEB的法向量为=(x,y,z), 则,即, 令z=1,则x=,y=﹣1, 即=(,﹣1,1), 平面AEF的法向量为, 则cos<>== 即二面角F﹣AE﹣B的余弦值为; (Ⅲ)若BE⊥平面AOC, 则BE⊥OC, 即=0, ∵=(a﹣2,﹣,0),=(﹣2,,0), ∴=﹣2(a﹣2)﹣3(a﹣2)2=0, 解得a=. 【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.
数学 试题推荐
最近更新