题目
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.
答案:证明:(1)连结AD (1分) ∵∠DAC = ∠DEC ∠EBC = ∠DEC ∴∠DAC = ∠EBC (2分) 又∵AC是⊙O的直径 ∴∠ADC=90° (3分) ∴∠DCA+∠DAC=90° ∴∠EBC+∠DCA = 90° ∴∠BGC=180°–(∠EBC+∠DCA) = 180°–90°=90° ∴AC⊥BH (5分) (2)∵∠BDA=180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45° ∴BD = AD ∵BD =8 ∴AD =8 (6分) 又∵∠ADC =90° AC =10 ∴由勾股定理 DC== = 6 ∴BC=BD+DC=8+6=14 (7分) 又∵∠BGC = ∠ADC =90° ∠BCG =∠ACD ∴△BCG∽△ACD ∴ = ∴ = ∴CG = (8分) 连结AE ∵AC是直径 ∴∠AEC=90° 又因 EG⊥AC ∴ △CEG∽△CAE ∴ = ∴CE2=AC · CG = ´ 10 = 84 ∴CE = = 2 (10分) 解析:略