题目

在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C. (1)求轨迹C的方程; (2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围. 答案:解:(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1, 化简整理得y2=2(|x|+x). 故点M的轨迹C的方程为y2= (2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0). 依题意,可设直线l的方程为y-1=k(x+2). 由方程组可得ky2-4y+4(2k+1)=0.① 当k=0时,y=1.把y=1代入轨迹C的方程,得x=. 故此时直线l:y=1与轨迹C恰好有一个公共点 当k≠0时,方程①的判别式Δ=-16(2k2+k-1).② 设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③ (i)若由②③解得k<-1或k>. 即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点.故此时直线l与轨迹C恰好有一个公共点. (ii)若或 .
数学 试题推荐