题目
如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是 .
答案: π . 【考点】轨迹;正方形的性质;旋转的性质. 【分析】如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH,只要证明∠EGF=90°,求出GE的长即可解决问题. 【解答】解:如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH. ∵四边形AOCB是正方形, ∴∠AOC=90°, ∴∠AFP=∠AOC=45°, ∵EF是⊙O直径, ∴∠EAF=90°, ∴∠APF=∠AFP=45°, ∴∠H=∠APF=45°, ∴∠EGF=2∠H=90°, ∵EF=4,GE=GF, ∴EG=GF=2, ∴的长==π. 故答案为π.