题目

.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.⑴求证:AC=CD⑵若AC=2,AO=,求OD的长度. 答案:⑴证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠ODB.∵∠ODB=∠ADC,∴∠CAB=∠ADC∴AC=CD.⑵解:在Rt△OAC中,OC==3∴OD=OC-CD=OC-AC=3-2=1解析:略
数学 试题推荐