题目
如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( ) A.40° B.50° C.60° D.70°
答案:B【考点】切线的性质;圆周角定理. 【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数. 【解答】解:连接OC,如图所示: ∵圆心角∠BOC与圆周角∠CDB都对, ∴∠BOC=2∠CDB,又∠CDB=20°, ∴∠BOC=40°, 又∵CE为圆O的切线, ∴OC⊥CE,即∠OCE=90°, 则∠E=90°﹣40°=50°. 故选B