题目

如图,质量为M的顶部有竖直壁的容器,置于倾角为θ的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器内有质量为m的光滑小球与右壁接触。让M、m系统从斜面上端由静止开始下滑L后刚好到达斜面底端。(重力加速度为g)求: (1)系统到达斜面底端的速度大小 (2)下滑过程中,m超重还是失重? M水平顶面对m的支持力大小为多少? (3)下滑过程中,M对m所做的功。 答案:(1)(2)mgcos2θ(3)0 解析:(1)根据机械能守恒定律:            解得:…(4分)       (2)下滑过程中m失重。……………………………………………(3分)   小球与容器一起沿斜面自由下滑,加速度为a=gsinθ。…………(1分) 如图竖直方向受mg、N向下加速,根据牛顿第二定律:    mg-N=masinθ  …………………………………………………(3分)  代入a=gsinθ解得N=mg(1-sin2θ)=mgcos2θ………………(1分) (3)对小球根据动能定理:    ………………………………………(2分) 解得=0…(2分)
物理 试题推荐