题目

17. 已知正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,点E为CC1中点,点F为BD1中点. (Ⅰ)证明EF为BD1与CC1的公垂线;(Ⅱ)求点D1到面BDE的距离. 答案: (Ⅰ)证法一:取BD中点M,连结MC、FM,∵F为BD1中点,∴FM∥D1D且FM=D1D.又EC=CC1且EC⊥MC,∴四边形EFMC是矩形,∴EF⊥CC1.                                                                     又CM⊥面DBD1,∴EF⊥面DBD1,∵BD1面DBD1,∴EF⊥BD1.故EF为BD1与CC1的公垂线.                                          证法二:建立如图的坐标系,得B(0,1,0),D1(1,0,2),F(,,1),C1(0,0,2),E(0,0,1).∴=(,,0),=(0,0,2),=(1,-1,2).                                                          ∴·=0,·=0,即EF⊥CC1,EF⊥BD1.故EF是CC1与BD1的公垂线.                                          (Ⅱ)解:连结ED1,有=.由(Ⅰ)知EF⊥面DBD1,设点D1到面BDE的距离为d, 则S△DBE·d=·EF.                                                    ∵AA1=2,AB=1, ∴BD=BE=ED=,EF=. ∴=··2=, S△DBE=··()2=. ∴d==. 故点D1到平面BDE的距离为. 
数学 试题推荐