题目

已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示. (Ⅰ)求函数f(x)的解析式; (Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间. 答案:考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;复合三角函数的单调性. 专题: 计算题. 分析: (I)先利用函数图象求此函数的周期,从而计算得ω的值,再将点(,0)和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可; (II)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间 解答: 解:(I)由图象可知,周期T=2(﹣)=π,∴ω==2 ∵点(,0)在函数图象上,∴Asin(2×+φ)=0 ∴sin(+φ)=0,∴+φ=π+2kπ,即φ=2kπ+,k∈z ∵0<φ< ∴φ= ∵点(0,1)在函数图象上,∴Asin=1,A=2 ∴函数f(x)的解析式为f(x)=2sin(2x+) (II)g(x)=2sin[2(x﹣)+]﹣2sin[2(x+)+]=2sin2x﹣2sin(2x+) =2sin2x﹣2(sin2x+cos2x)=sin2x﹣cos2x =2sin(2x﹣) 由﹣+2kπ≤2x﹣≤+2kπ,k∈z 得kπ﹣≤x≤kπ+ ∴函数g(x)=f(x﹣)﹣f(x+)的单调递增区间为[kπ﹣,kπ+]k∈z 点评: 本题主要考查了y=Asin(ωx+φ)型函数的图象和性质,根据图象求函数的解析式,利用函数解析式求复合三角函数单调区间的方法,属基础题
数学 试题推荐