题目
如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD。 (1)求⊙O的半径 (2)求证:DF是⊙O的切线。
答案:解:(1)设⊙O的半径为 ∵BE=2,DG=3 ∴OE=,OG= ………………………………1分 ∵EF⊥AB ∴∠AEG=90° 在Rt△OEG中,根据勾股定理得, ………………………………2分 ∴………………………………3分 解得: ………………………………5分 (2)∵EF=2,EG=3 ∴FG=EF+EG=3+2=5 ∵DG=3,OD=2, ∴OG=DG+OD=3+2=5 ………………………………6分 ∴FG=OG ………………………………7分 ∵DG=EG,∠G=∠G ∴△DFG≌△E0G ………………………………9分 ∴∠FDG=∠OEG=90° ………………………………10分 ∴DF⊥OD ………………………………11分 ∴DF是⊙O的切线 ………………………………12分