题目

(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.【小题1】(1)当x=   ▲ s时,DE⊥AB;【小题2】(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;【小题3】(3)当△BEF为等腰三角形时,求x的值. 答案:【小题1】(1)【小题2】(2)∵在△ABC中,∠C=90°,AC=BC=4.∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF;∴△ADE∽△BEF···················································································· 4分∴=,∴=,∴y=-x2+x························································ 5分∴y=-x2+x=-( x-2)2+∴当x=2时,y有最大值=·································································· 6分∴点F运动路程为cm············································································ 7分 【小题3】(3)这里有三种情况:①如图,若EF=BF,则∠B=∠BEF;又∵△ADE∽△BEF,∴∠A=∠ADE=45°∴∠AED=90°,∴AE=DE=,∵动点E的速度为1cm/s,∴此时x=s;②如图,若EF=BE,则∠B=∠EFB;又∵△ADE∽△BEF,∴∠A=∠AED=45°∴∠ADE=90°,∴AE=3,∵动点E的速度为1cm/s∴此时x=3s; ③如图,若BF=BE,则∠FEB=∠EFB;又∵△ADE∽△BEF,∴∠ADE=∠AED∴AE=AD=3,∵动点E的速度为1cm/s∴此时x=3s;综上所述,当△BEF为等腰三角形时,x的值为s或3s或3s.(注:求对一个结论得2分,求对两个结论得4分,求对三个结论得5分)解析:略
数学 试题推荐