题目
已知函数f(x)=ln(1+x)-x,g(x)=xlnx. (Ⅰ)求函数f(x)的最大值; (Ⅱ)设0<a<b,证明0<g(a)+g(b)-2g()<(b-a)ln2.
答案:本小题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力,满分14分. (Ⅰ)解:函数的定义域为. 令 当 当 又 故当且仅当x=0时,取得最大值,最大值为0. (Ⅱ)证法一: 由(Ⅰ)结论知 由题设 因此 所以 又 综上 证法二: 设 则 当 在此内为减函数. 当上为增函数. 从而,当有极小值 因此 即 设 则 当 因此上为减函数. 因为 即