题目
如图,在棱长为a的正方体ABCD—A1B1C1D1中,(1)求证:B1D1∥面C1BD;(2)求证:面AB1D1∥面C1BD;(3)求证:A1C⊥面C1BD;(4)求证:面C1BD⊥面ACC1A1;(5)求三棱锥B—A1C1D的体积.
答案:解析:(1)如图,在正方体ABCD-A1B1C1D1中,AA1BB1,AA1D1DBB1D1D,∴B1BDD1是平行四边形D1B1∥BD,又B1D1面C1BD,BD面C1BD,∴B1D1∥面C1BD.(2)由(1)得B1D1∥面C1BD,同理,同AD1∥BC1知AD1∥面C1BD,而AD1与B1D1是面AB1D1内两条相交直线,∴面AB1D1∥面C1BD.(3)如上图,在正方体ABCD-A1B1C1D1中,∵BD⊥AC,且由AA1⊥面ABCD知∴BD⊥AA1.∴BD⊥面ACC1A1,又A1C面ACC1A1,∴A1C⊥BD.同理A1C⊥C1D,∴A1C⊥面C1BD.(4)由(3)得A1C⊥面C1BD,A1C面ACC1A1,∴面C1BD⊥面ACC1A.(5)如上图