题目

已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=. (1)求该反比例函数和一次函数的解析式; (2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.   答案:【考点】反比例函数综合题. 【分析】(1)过B点作BD⊥x轴,垂足为D,由B(n,﹣2)得BD=2,由tan∠BOC=,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式; (2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标. 【解答】解:(1)过B点作BD⊥x轴,垂足为D, ∵B(n,﹣2), ∴BD=2, 在Rt△OBD中,tan∠BOC=,即=, 解得OD=5, 又∵B点在第三象限, ∴B(﹣5,﹣2), 将B(﹣5,﹣2)代入y=中,得k=xy=10, ∴反比例函数解析式为y=, 将A(2,m)代入y=中,得m=5, ∴A(2,5), 将A(2,5),B(﹣5,﹣2)代入y=ax+b中, 得, 解得. 则一次函数解析式为y=x+3; (2)由y=x+3得C(﹣3,0),即OC=3, ∵S△BCE=S△BCO, ∴CE=OC=3, ∴OE=6,即E(﹣6,0). 【点评】本题考查了反比例函数的综合运用.关键是通过解直角三角形确定B点坐标,根据反比例函数图象上点的坐标特求A点坐标,求出反比例函数解析式,一次函数解析式.
数学 试题推荐