题目

(12分)如图所示,一块质量为M,长为L的均质长木板放在很长的光滑水平桌面上,板的左端有一质量为m的小物体(可视为质点),物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮。某人以恒定的速率v向下拉绳,物体最多只能到达板的中点,已知整个过程板的右端都不会到达桌边定滑轮处。试求:    (1)当物体刚达木板中点时木板的位移;(2)若木板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数应满足什么条件? 答案:解析:(1)m与M相对滑动过程m匀速运动有 : vt = S1         (1)M匀加速运动有:vt=S2      (2)S1  - S2 =L       (3)联立以上三式得S2 =L (2)设m与M之间摩擦因数为μ1当桌面光滑时有   mgμ1 = Ma1   (4)v2 = 2a1S2     (5)由(4)(5)得如果板与桌面有摩擦,因为M与桌面摩擦因数越大,m越易从右端滑下,所以当m滑到M右端两者刚好共速时摩擦因数最小,设为μ2对M有:    (6)          (7)           (8)对m有:            (9)        (10)联立以上五式得 所以桌面与板间的摩擦因数μ ≥
物理 试题推荐