题目
已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是( ) A.0 B.1 C.2 D.3
答案:D解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0, ∴抛物线的对称轴x=﹣>, ∴b>﹣a,即a+b>0,所以①正确; ∵a<0,b>0,c>0, ∴﹣a+b+c>0,所以②正确; ∵a﹣b+c=0,即b=a+c, ∴4a+2(b+c)+c>0, ∴2a+c>0, ∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c), 而2a+c>0,2a﹣c<0, ∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确. 故选:D.