题目

如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为     . 答案:  .  【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可. 【解答】解:连接OD,如图, ∵CD⊥OC, ∴∠COD=90°, ∴CD==, 当OC的值最小时,CD的值最大, 而OC⊥AB时,OC最小,此时OC=, ∴CD的最大值为=AB=1=, 故答案为:. 【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.
数学 试题推荐