题目

如图,椭圆的左焦点为,过点的直线交椭圆于,两点.当直线经过椭圆的一个顶点时,其倾斜角恰为. (Ⅰ)求该椭圆的离心率; (Ⅱ)设线段的中点为,的中垂线与轴和轴分别交于两点, 记△的面积为,△(为原点)的面积为,求的取值范围.   答案:(Ⅰ)解:依题意,当直线经过椭圆的顶点时,其倾斜角为………1分 则 .                                       …………2分 将  代入 , 解得 .                                                 ………3分 所以椭圆的离心率为 .                                 …………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为.              …………5分 设,. 依题意,直线不能与轴垂直,故设直线的方程为,将其代入 得 .        …………7分 则 ,, .                                   ………………8分 因为 , 所以 ,.                   ………………9分 因为 △∽△, 所以                ………11分 .          ………………13分 所以的取值范围是. 
数学 试题推荐